UIC University of Illinois at Chicago
The Health in Arts Program
and Online Health & Safety in the Arts Library David Hinkamp, MD, MPH
Not Dying For Their Art Alicia P. Gregory
Useful Sources of Information and Expert Advice publications and websites
Art Teacher Sues and Wins Center for Safety in the Arts
Although visual arts - such as painting, sculpting, printmaking, and metal work - are often thought of as benign pursuits, artists and craftspeople work with a wide range of potentially harmful materials. Each art discipline has its own battery of hazardous substances. Painters often use aromatic hydrocarbons such as toluene and styrene, esters such as butyl acetate, ketones such as isophorone, and glycols such as butyl cellosolve and methyl cellosolve acetate. Sculptors are exposed to metal fumes and dusts, sand and rock dusts, and, if they use organic materials, biological dusts such as molds, anthrax spores, and wood dusts. Other hazards are found in printmaking, ceramics, glassblowing, fiber arts, and photography. Artists may be at particularly high risk because they are most often self-employed, and so work in a relatively unregulated environment. They also often have lower incomes and are unable to afford safety equipment such as ventilation hoods and respirators.
Every artist, it seems, knows at least one other artist who has had serious health problems related to the materials they use. For example, a ceramics teacher has silicosis and a collapsed lung; a painter has become hypersensitized to solvents and can no longer work with oil paints; or a potter and her young daughter have elevated levels of lead in their blood from applying and firing ceramic-tile glazes. Yet in spite of ubiquitous hazards in the arts, only a handful of industrial hygienists specialize in the health impacts of the artist's working environment. "The art community is so loosely organized that it's been difficult for agencies to identify it as a community that needs help," explains Gail Barazani, a former art teacher and environmental regulatory affairs specialist, and for 20 years the author of a column on health hazards in the arts.
Artists are a diverse group. According to the Bureau of
Labor Statistics, in 1995 about 233,000 Americans were full- or
part-time professional painters, sculptors, printmakers, or
craftspeople. Another 136,000 were photographers. These numbers,
however, don't account for the many artists who spend hours every week
producing art but support themselves at "day jobs," and so identify
themselves as waiters, secretaries, or taxi drivers. Also excluded from
the statistics are hobbyists, college students, art teachers, senior
citizens in therapeutic art programs, and children. And many of these
professional, amateur, and fledgling artists are at risk.
Art History
Although the topic
is currently not well-studied, the hazards of fine arts have been
recognized since at least the early eighteenth century, when Bernardo
Ramazzini, the "father of industrial medicine," discussed occupational
risks to stone carvers and painters. In his 1713 tome
De Morbis Artificum Diatriba
(The Diseases of
Workers), Ramazzini described hazardous materials that continue to pose
risks to artists today:
In fact, researchers have found evidence that at least some of the old masters were affected by the materials they used to create their masterpieces. According to physicians Lisbet Milling Pedersen and Henrik Permin at Hviolovre Hospital in Copenhagen, Denmark, the rheumatoid arthritis suffered by Paul Rubens (who had one of the first cases of the disease described in the literature), Auguste Renoir, and Raoul Dufy, and the scleroderma that plagued Paul Klee can be linked to the bright and clear colors that dominated their canvases.
These afflicted artists depended on colors based on toxic heavy metals more often than their contemporaries, who favored earth colors based on harmless iron and carbon compounds. Prolonged exposure to these substances - including mercury, cadmium, arsenic, lead, antimony, tin, cobalt, manganese, and chromium - can promote the development of inflammatory rheumatic diseases, as well as chronic lead and manganese poisoning.
Large-scale studies of the environmental hazards to contemporary artists have been relatively rare. The very diversity that makes the arts population hard to estimate also makes it hard to study. "If you want to study factory workers you can go to the company or you can go to the union. It's not such an easy thing for artists," explains National Cancer Institute scientist Aaron Blair. Two NCI studies conducted in the mid-1980s, however, did find higher risks for urinary bladder cancer, leukemia, and arteriosclerotic heart disease among painters. "We went to two different places and found this bladder cancer excess, which seems pretty convincing, I think," Blair says. These maladies were linked to the profession of painter, rather than to any particular material, raising questions among some as to their validity.
New Media
Although the old
masters were exposed to an impressive array of potentially debilitating
substances, trends in modern art have put contemporary artists in
contact with a much wider assortment of materials. Today's artists will
employ virtually anything in their creations, from commercially
produced paints to discarded household appliances to esoteric materials
not previously available such as plastics, molten ceramics, and
acrylics.
"There is no hazardous chemical that isn't being used in an
art department somewhere," says Monona Rossol, one of the few
industrial hygienists specializing in arts safety. Rossol, founder and
president of the nonprofit Arts, Crafts, and Theater Safety
Corporation, first became interested in the subject of art safety while
an art graduate student at the University of Wisconsin in Madison. To
support herself, she worked as a research chemist (she holds a masters
degree in chemistry) and commuted between the two departments daily:
Industrial hygienists specializing in the arts, such as Michael McCann, report finding a staggering assortment of dangerous and often
unlabeled materials in artists' workplaces. "In the last three
[college-level] schools I inspected I found several quarts of cyanide
electroplating solutions," McCann says. Combined with the acids
printers often use, cyanide solutions produce hydrogen cyanide gas.
"Now, you're talking about a slight accident and you can have a
fatality within minutes." Ten years ago, on an inspection of a junior
high school, McCann stumbled across a pound jar of uranium oxide.
Prized for its brilliant oranges, uranium oxide was a popular colorant
for ceramics and pottery glazes until it was banned about 10 years ago
by the Atomic Energy Commission. Oxides of uranium and certain other
colorant metals including arsenic, beryllium, cadmium, chromium, and
nickel are known human carcinogens.
At least lead is an established hazard whose use and effects health professionals recognize readily. New and unusual materials are steadily entering artists' studios, and are surprising and sometimes confounding health workers. "Artists are always experimenting with new materials to get different effects, so the exposures are continuously surprising," says Shirley Conibear, an occupational health physician who frequently treats artists.
Artists are just as likely to find materials in a junkyard, in a lumberyard, on the beach, or in a hardware store, as in a traditional art-supply store. This diversity of sources and materials - often unaccompanied by instructions or labels - can make predicting exposures difficult. As an example, Barazani tells of an University of Illinois art department teaching assistant - an asthmatic - whose sculptures were constructed of used refrigerators that he sliced apart with an electric saw. Working alone one night, he cut into a refrigerator's coolant container, which sprayed him with Freon, triggering a near-fatal asthma attack.
Although this may seem like a freak accident, artists
frequently put themselves at risk, some say because they don't hold the
same healthy respect for materials as other professionals. "They're not
your normal breed of people in industry at all," says Ted Rickard,
health and safety manager for the Ontario College of Art and Design in
Toronto. "They're always experimenting, which means you have people
mixing two chemicals together to see what happens or running something
through a bandsaw and twisting it at the same time to make an
interesting shape."
Risks of Experimentation
It's
this devotion to experimentation combined with a general unfamiliarity
with safety procedures as much as the materials themselves that
endangers artists. Whereas a chemist might take a clearly labeled
bottle of hydrochloric acid out of a ventilated cabinet to work under a
ventilation hood near an eyewash station in a well-ventilated room, a
printmaker is just as likely to pour the acid out of an unmarked jelly
jar in a stuffy basement:
"We know that chemicals are dangerous and the chemistry lab uses chemicals, but the perception is that art materials are not chemicals," McCann says.
Perhaps the widest assortment of dangerous chemicals in the arts are, in fact, found in the various types of printmaking; lithography (in which images are printed from drawings on stone or thin zinc or aluminum plates), intaglio (in which images are printed from acid-etched metal plates), photoetching (in which a photoresist is exposed to light), relief printing (in which areas of the plate, typically wood or linoleum, are cut away), and screen printing (in which a stencil is applied to a screen). Pigments include lead chromate, chromium, zinc chromate, strontium, and cadmium, all toxic metals. Printing equipment including plates, press beds, rollers, and slabs is cleaned with kerosene, chlorinated hydrocarbons such as trichloroethylene, and aromatic hydrocarbons such as toluene and xylene. Acids, including hydrofluoric, acetic, hydrochloric, tannic, phosphoric, and nitric acid, are used to etch plates.
Inadequate ventilation also can lead to
overexposure to the solvents printers use, says Laurence Fuortes, a
preventive medicine physician who often cares for members of the large
Iowa arts community. Symptoms from these reactive compounds include
burning eyes, nose, and throat; chest tightness; coughing; and
asthma-like syndromes. In addition:
"One of the major concerns with solvent accumulation is the euphoric and neurotoxic effects," Fuortes says. "One person who was working in a relatively confined space screen printing actually did have euphoric symptomology from overexposure to solvents, a narcotic-like effect. He was getting drunk."
Precautions and Changes
Good
ventilation, however, is the exception to the rule in the artist's
workplace, and few facilities have been designed properly for art
production, Rossol says. Professional artists often work in studios
they've constructed themselves on limited budgets. Children are exposed
to art materials in ordinary classrooms, rustic summer-camp craft huts,
and their parents' studios, often the worst setting because of the
dangerous materials adults sometimes favor. Hobbyists may work on the
dining room table - perhaps while cooking or eating - or in makeshift
storefront craft shops. And even college art students working in
buildings built with art in mind often suffer the consequences of poor
designs and outdated practices:
Like many schools, however, the School of Art Institute of Chicago has recently reworked its ventilation system, including rerouting the ceramics studio's exhaust directly out of the building rather than through the photography studio. Taking an even larger step is the University of Wisconsin - Madison, which is spending more than $3 million to reventilate its art department. The department shares a large building whose ventilation system recirculates the air several times before exhausting it. Although recirculation is more energy-efficient than using heated or cooled air just once before exhausting it, a recirculating system also spreads fumes and particles throughout a structure. Single-circulation systems are standard in chemistry departments. "It was designed inappropriately to begin with because no one knew about the hazards," says Jack Wunder, a University of Wisconsin facilities engineer. "They thought chemistry's a hazard, not art. That's a sad commentary, but that's the way it was in the '60s."
Even recently built college art buildings, however, often are designed more like office buildings than chemistry labs, Rossol says. However, according to McCann, the National Association of Schools of Art and Design now includes safety standards among its criteria for certification or recertification. Still, recirculating air-handling systems seem to be the norm rather than the exception. Many work areas lack eyewash stations and emergency showers. Students' studios are arranged in large communal work groups so that contaminants are shared as well. In a large California school, a single large space was divided into 65 cubbyholes by flammable curtains. The students, many of whom worked with volatile solvents, had decorated their areas with paper and cloth. "And you could see the cigarette butts on the floor," Rossol says. "It was an incredible [accident] waiting to happen."
Even the opposite approach - individual studios - can backfire. Realizing that many artists prefer to work and live in the same space, another art school - this one in Massachusetts - built a dormitory that included a combined studio, kitchenette, and sleeping area for each student. The unfortunate result for the students was 24-hour-a-day exposure to not only their own materials but those of other students, aggravated by the inadequate 300 cubic foot per minute bathroom fans installed as the sole means of ventilation.
At the least, the Massachusetts school duplicated the
conditions under which many professional artists work. In spite of the
risks, or more likely oblivious to them, about half of all artists work
at home, and of those, about half work in living areas. That increases
the chances of eating, touching, and breathing art materials, Conibear
says. "There are all kinds of opportunities to contaminate themselves
and [their] family that you don't have if you go somewhere to work."
Home studios, she says, often place children in contact with
materials - such as lead and other heavy metals - to which they are
particularly vulnerable. "There have been a number of problems with
people developing cottage industries out of their homes where they're
doing these things in jerry-rigged situations, and they and their
families have suffered the effects of overexposures," adds Fuortes.
Outside the Classroom
Unlike
young adults, children are less likely to be exposed to art-materials
hazards at school than at home, or worse, at summer camps where
untrained teenagers working in primitive settings may supervise younger
children working on such projects as making lead- or lithium-glazed
drinking cups, McCann says. Most states publish lists of materials
suitable for use in schools. The Labeling of Hazardous Art Materials
Act of 1988 requires warning labels for materials that are not suitable
for use by children and empowers the Consumer Product Safety Commission
to obtain court injunctions against schools that purchase hazardous art
materials for use in grades six and below. But although the act has
improved arts-materials labeling, McCann says, many imported materials
from countries with different regulations or from small-scale
manufacturers may be labeled incorrectly. "They don't have the
knowledge or the money to put into having a certified toxicologist
evaluate the label. That gets expensive," he explains. "In a cottage
industry, they may not be aware of the true hazard within their
products," adds University of Wisconsin environmental hygienist William
Deppen.
It is also possible that materials now thought to be safe for children will later be found hazardous. Rossol warns in particular of popular low-temperature modeling clays. Manufacturers of these brilliantly colored polymer clays have substituted as a plasticizer untested complex glycol ethers for the primary phthalate ethers (diethylhexyl phthalate or DEHP), which are now known to be animal carcinogens. The ethers are absorbed through the skin and, to a lesser extent, can be inhaled when the clay is fired. Such clays may also pose a problem, says McCann, because they may be used at home and fired in a family's oven that is also used for cooking. "If I could draw you the two sets of molecules, the DEHP and the ones they replaced them with, you would see how closely similar they are," Rossol says. "And yet since they have never been actually tested for long-term hazards, they can continue to label the product nontoxic."
In fact, Rossol says, very few dyes and pigments have been studied, especially organic chemicals. Rather than label those products - particularly those closely related to known toxic or carcinogenic chemicals - as nontoxic, she suggests a label that reads: "This pigment has never been tested for long-term hazards."
In spite of the protections afforded to children and improvements in product labeling, most artists work in an unscrutinized, loosely regulated world. Of the 4,000 or so workplace investigations that the National Institute for Occupational Safety and Health's Hazards Evaluation and Technical Assistance Branch has conducted in the last 10 years, only two of those requested have been in the arts. The branch does, however, answer thousands of phone inquires each year, some of which come from artists, according to Assistant Branch Chief Rick Hartle. And although any nongovernmental business that employs more than one person is regulated by the Occupational Safety and Health Administration, that standard misses the bulk of artists, most of whom are self-employed, students, or amateurs.
Such people tend to fall through the cracks in the
regulatory system:
Art-hazards experts have no shortage of suggestions for ways that the lives of artists could be made safer through regulation and education. Manufacturers could be compelled to test products more extensively and label them more accurately. Art-safety courses could become a required part of the curriculum of any program - whether elementary school, college, university, or craft shop - that provides instructions in the arts. Artists could switch to safer, if more time-consuming, materials and techniques. Printmakers, for example, could clean their plates with strong detergent rather than solvents. And just teaching painters to stop licking their brushes to a point could greatly reduce their ingestion of dangerous pigments. Arts colleges could limit access to studios to a reasonable workday, rather than encouraging overexposure with heavy workloads and strict deadlines, a practice Rossol likens to "hazing." All schools could be subjected to inspections by certified industrial hygienists trained to recognize the techniques, tendencies, and tools of artists. Schools could require their instructors to apply for permission to introduce any untested, unapproved, or newly invented material or technique to the classroom.
But if there is a single point that art and health professionals agree upon, it's that members of the arts community, including working artists, art instructors, and art administrators, need to make a great leap in their understanding of arts safety. Whether artists are willing to learn, however, is another question.
Perhaps, Rossol and Rickard suggest, artists have learned to shun safe practices as a badge of membership in the arts subculture. Rickard recites a litany of foolhardy practices he's seen in his institution alone: a visiting instructor who nailed a block of expanded polystyrene to the wall of the classroom and set fire to it so his students could see what kind of pattern the smoke made on the white wall; a faculty member found sitting in a large pool of mineral spirits, lost in thought; students using solvents, plastic resins, and epoxies in unventilated studios, although ventilation hoods are available.
"Artists are a very strange breed of people," Rickard says. "They tend to be quite anti-establishment, anti-authority. If the rules say do this, they'll do the opposite quite deliberately." Or perhaps artists feel that "it's a risk you're willing to take because you're excited by the materials and their potential," Barazani says. Or maybe "these artists are not casual with the materials they're working with because they feel they know them so well that they don't have to worry about them," Conibear says, "but rather they're mostly just ignorant and just haven't thought of it in that context."
The most compelling explanation may be a combination of a
dangerous attitude and ignorance of dire consequences.
Printmakers Beware!
Dr Michael McCann is one of the world's leading authorities on health and safety in the arts. He became interested in safety issues in printmaking in 1974 during a visit to a silkscreen workshop for children in New York City. McCann was intrigued by this great new printmaking process - favoured by Warhol - but developed a headache within half an hour of his visit. He realized that through unprotected exposure to the cellulose thinners in screen inks and solvents, children attending the silkscreen class were put at risk.
A scientist by training, Dr McCann became immediately aware that artists' curiosity about materials and processes had a serious downside: chemicals, materials, and processes (some highly toxic, some less so) are more likely to be used with professional safety precautions in a science lab or in industry, but artists and art schools frequently consider these in a much more haphazard and often casual manner. A study in 1980, conducted in collaboration with the National Cancer Institute, provided statistical proof of a link between the premature deaths of artists and the use of toxic materials.
In the early 1970s, Dr McCann wrote a series of seven articles for Art Workers News, which were then compiled as the first edition of his Health Hazards Manual for Artists. The 6th edition of this book, which has so far sold over 80,000 copies, was published in July 2008.
Artist Beware includes a comprehensive chapter on PRINTMAKING hazards and precautions.
Health & Safety Checklist for Art Schools, Studios and Workshops
Michael McCann
In more than 80 inspections of art schools and university art departments that I have done over the last 20 years, I have found many problems related to use of more toxic art materials than is necessary: inadequate ventilation, poor storage and handling of art materials, lack of eyewash fountains and emergency showers, improper waste disposal procedures, incorrect selection of personal protective equipment, and more. However, the major problem I have found is lack of a formal health and safety program. Such a program would establish proper health and safety procedures and have an ongoing way of ensuring their enforcement.
The following checklist is a self-evaluation tool for art schools and art department to determine the effectiveness of their health and safety program. This checklist also includes basic questions about precautionary measures. It is not intended to be comprehensive or to ensure compliance with OSHA regulations.
Answers in the negative indicate a program deficiency.
Health and Safety Program
Reprinted from Art Hazards News, vol. 20 no. 2, 1997
ORGANIZATION | YES | NO |
1. Is a vice president or comparable official responsible for the program? | ||
2. Has the president issued a health and safety policy statement? | ||
3. Is there a health and safety official responsible for implementation of the program? | ||
4. Is there a budget for correcting health and safety hazards? | ||
5. Is there a health and safety (H&S) committee? | ||
6. If so, does the H&S committee have representatives of the following groups? |
HEALTH + SAFETY PROGRAM ELEMENTS |
YES |
NO |
1. Are there regular inspections of all studios? |
||
2. Is there an approval mechanism for introducing new chemicals and processes into |
||
3. Is there an inventory of hazardous chemicals? |
||
4. Are there material safety data sheets (MSDSs) for all hazardous art materials? |
||
5. Are MSDSs stored centrally and in studios where they are used? |
||
6. Is there a procedure for reporting and investigating health and safety problems? |
||
7. Is there a procedure for reporting and investigating accidents, illnesses and spills |
||
8. Are deadlines established for correcting hazards? |
||
9. Are there emergency procedures for the following? |
||
10. Is there education and training in the hazards and precautions of art materials |
||
11. Is there a medical surveillance program for staff and students? |
||
12. Is there a health and safety manual for staff and students? |
||
13. Are there procedures for monitoring and evaluating the effectiveness of the |
STUDENT SUPERVISION |
YES |
NO |
1. Are students forbidden to bring in their own art materials? |
||
2. If not, are they required to buy from an approved list? |
||
3. Do teachers and technicians enforce the above procedures? |
||
4. Are open studios supervised during regular hours? |
||
5. Is there a written procedure for students working unsupervised? |
||
6. Is there a written contract specifying permitted materials and penalties for non- |
STUDIO PROCEDURES |
YES |
NO |
1. Are the least toxic chemicals available being used? |
||
2. Are water-based products used whenever possible? |
||
3. Are liquid products used when possible to replace powders? |
||
4. Are chemicals purchased in the smallest practical quantities? |
||
5. Is there proper storage of art materials? (e.g., flammable storage cabinets, |
||
6. Are all art materials properly labeled with contents and hazards, including |
||
7. Is there adequate ventilation for art processes producing airborne contaminants? |
||
8. Is food, drink, and smoking banned in all studios? |
||
9. Are all containers covered when not in use? |
||
10. Are sources of ignition (e.g., flames, sparks, static electricity, etc.) |
||
11. Are all floors, storage rooms, etc. kept clear of combustible materials and |
||
12. Are fire extinguishers or exits blocked? |
||
13. Are combustible materials, waste materials, and rubbish stored in approved |
||
14. Are oily rags, paint rags, and similar materials subject to spontaneous |
||
15. Is welding done in a properly equipped and approved area which is free of |
||
16. Are dusts wet mopped or vacuumed, not swept? |
||
17. Are spills cleaned up immediately? |
||
18. Are electrical machinery and power tools properly grounded? |
||
19. Is electrical wiring installed according to the electrical code and maintained |
||
20. Is fixed wiring used instead of flexible cords? |
||
21. Is there a lockout/tagout program for maintenance of machinery? |
||
22. Is personal protective equipment (e.g. goggles, respirators) supplied by the |
||
23. Are there procedures for determining the need for and proper selection of |
||
24. Is there training in the proper selection, fitting, use and maintenance |
||
25. Is there a hearing conservation program in noisy areas? |
||
26. Are there proper procedures for disposal of waste hazardous art materials? |
||
27. Are old art materials and equipment removed and disposed of properly? |
||
28. Do studios have the following standard equipment? |
||
29. Do studios have the following approved equipment where needed? |
Over the last fifteen years, there has been growing concern about the hazards of art materials and processes. In fact, artists, art teachers, and even art students are developing many of the same occupational diseases as are found in industry. Of course this should not be entirely surprising, since artists use many industrial chemicals, often without knowledge of the hazards and how to work safely. These hazards are found in all different types of art media...Health and safety hazards in art schools and art programs in colleges and universities have resulted in injuries from fires and from accidents involving machinery, and occupational illnesses from exposure to toxic chemicals or other hazards. In certain cases, fatalities have resulted. Examples include bladder cancer in painters; lead poisoning in stained glass artists, potters, and enamelists; peripheral nerve damage in commercial artists; emphysema in acid etchers; aplastic anemia and leukemia from use of benzene; severe asthma among users of fiber-reactive dyes; cyanide poisoning and cadmium poisoning in jewelers, kidney damage from cadmium silver solders in jewelers; brain damage in silk screen printers; death of a weaver from anthrax; and metal fume fever in welders. In addition to possible injuries and illnesses, health and safety problems have legal implications. A variety of laws related to health and safety affect colleges and universities, including the Occupational Safety and Health Act, the Resource Conservation and Recovery Act, state workers' compensation laws, and local fire prevention laws. In addition, students, if injured due to the negligence of the teacher or college, can sue both the teacher and college. These laws are discussed in more detail in 'Artist Beware'. A formal, effective health and safety program is a proven way to reduce the number of injuries and occupational illnesses. Aside from reducing the serious problems of loss of life and health, a health and safety program can reduce the number of workers' compensations claims and minimize the chance of lawsuits. An effective health and safety program is also important in accreditation of art schools. The National Association of Schools of Art and Design has made the adequacy of a health and safety program in college and university art departments a major factor in obtaining and keeping accreditation.
To contact Dr Michael McCann:
Email: michael.mccann@world.att.net
FEMALE Before Conception | FEMALE During Pregnancy | MALE Before Conception | FETUS Before Conception | NEWBORN After Birth |
loss of sex drive | increased vulnerability of mother | loss of sex drive | conception prevented or made more difficult | toxic effects on newborn from chemicals transmitted in breast milk |
lowered fertility (production of damaged eggs or decreased ability to ovulate) | complications from miscarriages, spontaneous abortions, etc. | impotence | mutations from damaged egg or sperm | toxic effects on infant from chemicals contaminating living area or parents' clothes, hair, etc. |
sterility | exposure to teratogens: developmental damage resulting in fetal death, birth defects, growth retardation, premature birth, low birth weight, etc. | lowered fertility (production of damaged sperm or decreased ability to produce sperm) | toxic effects on child being exposed to chemicals in art studio | |
genetic damage to eggs (mutations) | exposure to toxic chemicals - miscarriages, organ damage, spontaneous abortions, etc. | sterility | exposure to some carcinogens - possible cancer during childhood or later | |
menstrual changes or disorders | genetic damage to sperm cells (mutations) | |||
cancer of reproductive organs | testicular changes or damage | |||
cancer of reproductive organs |
Medical specialists in this program treat arts workers with health concerns that may be caused by their work or affect their ability to work. These specialists also work with the arts communities to investigate and prevent hazardous work practices among art students, hobbyists and professionals. The focus of these efforts includes:
Lithography,
Intaglio and Relief Printing
Using
a Safer Mordant Intaglio Etching on Aluminum and Zinc
Controversy
Over "Non-Toxic" Label
Reading
Label Warnings on Art Materials
Not Dying For Their Art
Alicia P. Gregory
Odyssey, Fall 2000
The following article was published in 2000 and is reproduced here with the permission of the author and editor of Odyssey Magazine for the University of Kentucky, and Gerald Ferstman. Ross Zirkle died in 2007.
"Nobody should have to die to make art." That's the bottom line for UK (University of Kentucky) art professors Gerald Ferstman and Ross Zirkle. These devoted printmakers are creating non-toxic techniques to keep their craft alive. "Printmaking is part of the nature of man, the desire to leave an impression or mark that he was here," says Zirkle, an assistant professor who came to UK in 1997.
Toxic elements first seeped into the printmaking world with the invention of oil paint, Zirkle says. New, often hazardous, chemicals were needed to break down oil-based inks. Common household chemicals like turpentine and lacquer thinner (for example, nail polish remover) are among the more than 100 toxic substances used by traditional printmakers. Some of the known side effects from continuous exposure to these chemicals, many of which are carcinogens, include birth defects, central nervous system damage, asthma and emphysema, systematic poisoning of the lungs, liver, kidneys and heart, nervous disorders, skin eruptions and dermatitis, and damage to the mucus membranes and upper respiratory tract.
"My grandfathers were both pressmen for newspapers," says Zirkle. "One developed dermatology problems from handling inks and eventually died of cancer."
Ross Zirkle (left) and Gerald Ferstman at their metal press
As a research fellow at the Tamarind Institute at the University of New Mexico, one of the most prestigious lithography schools in the country, Zirkle worked with an artist who had cancer in an arm. "She told me that of the five women she had stayed in touch with for 20 years since they were in art school together studying printmaking, four had developed cancer," Zirkle says. "The ratio was too high not to suspect that it had something to do with what they were exposed to in art school."
"There's just too much evidence now to ignore the toxic nature of these chemicals," says Ferstman, an associate professor who has spent two-thirds of his 30-year career at UK developing safer printing techniques. "Some art programs have been fined heavily by OSHA and the EPA, and there have been lawsuits by students who've suffered nerve damage they claim was caused by their exposure to chemicals. It's a liability most schools aren't willing to risk anymore."
"A lot of schools are dropping printmaking altogether," says Zirkle, "or offering it only as a sub-line, not on the same par with painting or drawing."
Not many institutions can afford the expensive ventilation systems required by federal legislation, Ferstman says. "When I came to UK, we installed a ventilation system that was adequate for the acids we were using. Last spring the fire marshal came through and said our facilities were substandard for acids, and we could no longer use them. Fortunately, I'd developed a safe etching ground and am now using a salt etch that works well, so the program could continue.
The art of printmaking is really the art of process - a combination of artistic vision and chemical know-how. "Students look at printmaking as a kind of chemical laboratory of magical events because the process is so far removed from most people's knowledge of art," says Zirkle. "Printmaking uses medieval processes in a digital age, which just makes this stuff seem more mysterious than ever."
"Printmaking as we know it will change," Zirkle says. "In a few years you may see some Macintosh G4s lined up along the wall and things will be made digitally, but actually making a plate with your hands, involving yourself in the rhythm of running it through the press each time you pull an impression - that kind of experience will be lost unless something is done." "A press can be used for 100 years. You buy a computer, and it's obsolete in three," says Ferstman.
Not all artists and academics embrace nontoxic printmaking, say Ferstman and Zirkle. "At the most, 25% of schools and universities are using nontoxic techniques," Ferstman says. "A lot of people are still holding onto the traditional ways because they don't want to be re-trained. The older generation seems to feel the old ways are not so bad, it's just a matter of having the right facilities." Traditionalists aren't willing to invest the time to experiment with nontoxic alternatives, he says. "They'll use something that's more toxic, more dangerous, more of a liability, because they know exactly how it works," says Zirkle. "That's been a problem with the nontoxic movement in printmaking. A lot of products that came out were mostly hype, they didn't work well, and a lot of people bought them and got burned, and then they said, 'Well, this stuff doesn't work'."
"Artists have never been as concerned with their health as they are with the results of their work," says Zirkle. "The burden of proof for change has been difficult. Not only do Jerry and I have to prove that our stuff is safer, we also have to prove it works as well as the traditional ways."
Their research involves a lot of trial and error. "People want products; they want the science of success. They don't understand that sometimes you can work for a long time and learn things, but you don't come up with a product that's workable," Zirkle says.
The researchers are now looking for a water-based ink that can be used in all printmaking techniques and are experimenting with improving and adapting new non-toxic products. Zirkle's research centers on waterless lithography. "In traditional lithography, water is used to repel oil-based inks from the non-image areas of the printing surface. In waterless lithography the non-image areas are covered with silicone that will also repel ink," he explains. This isn't any fancy kind of silicone - it's the kind you buy at the hardware store to caulk your bathtub. "While I was at Tamarind, I became intrigued by the possibility of using water-based inks with the waterless printing process. Today we have a very workable system of ink and modifiers that provides a safe, economic and reliable alternative to oil- and solvent-based lithography."
Water-based inks print more detail than is possible with oil-based inks and are safe to use even without gloves, Zirkle says. And another important advantage is time. "Clean up is so fast with water-based inks (just soap and water) that you can often clean up and print the next run in the time it would have taken you to clean up one solvent-based ink run. This new, faster process allows more time for experimentation and more color runs, which should produce better prints which are actually cheaper to print." In four weeks, he says, his Beginning Printmaking students are printing color, a feat that with traditional lithography would take them up to four years to achieve.
UK printmaking teachers and their students discuss their latest works. From left to right: Emily Whipple, Teresa Koester, Ross Zirkle, Joyce Probus, Gerald Ferstman, and Helene Steene.
"When you teach printmaking to kids you've got to make it as user-friendly as possible," says Zirkle. "And they want results. They're paying tuition to make art, and they want things to work. The burden's on us entirely to be able to troubleshoot for all the problems 30 kids might generate."
But Ferstman says the students also generate useful ideas. "A lot of times they try things I wouldn't have even thought of doing, and they work. It's good that they see us experimenting with new materials and that that attitude transfers to them somehow so they understand a little bit about what research is."
Ferstman and Zirkle's work is supported by a network of like-minded artists around the world. One of their favorite collaborators is Nik Semenoff. "He's an inventor," Zirkle says. In addition to a number of novel rollers for printmaking, Semenoff created a salt etch - Ferstman's key interest - the first good alternative to using acids to do etchings. "This strong salt is a lot safer than acid," Ferstman says. It's not 100% non-toxic - after all, it has to eat through metal - but there aren't any harmful fumes."
He's spent the last six years developing safer etching grounds - a mix of ink and chemicals into which the image is etched. "In the summer of 1997, I began experimenting with water-based ink as a substitute for traditional etching grounds, because of their carcinogenic qualities and flammability hazards," Ferstman says. "This new ground could be applied to copper, steel, aluminum, bronze, iron, and zinc etching plates, with excellent results. The only problem was that removal required strong detergents and ammonia. By adding a commercial water-based silk screen extender that is set with heat, I was able to come up with a new ground that washes off with just warm water and dry laundry detergent." In addition to applications for etching, Ferstman has been able to adapt this ground for silk screen printing.
"I was in the first class to use Jerry's new soft ground," says Joyce Probus, a student who earned her bachelor's degree in fine arts last summer. "This process is a catalyst to getting down to the art-making as opposed to being inhibited by a lot of steps and chemicals."
Another Semenoff innovation - a way to use and reuse the backside of commercial aluminum printing plates - has allowed the UK professors to operate their shop at a fraction of the cost that other universities incur. "We are able to print from the backside of plates that we get at salvage for free. And when it comes right down to it - are our students producing as nice a print as students at other universities using premium materials? More often than not, our students are actually doing better because they don't have to choke on the cost of the materials. We give them as many plates as they want," Zirkle says.
And the UK students' work is often excellent, evidenced by the fact that they have been accepted into some of the nation's most prestigious graduate printmaking programs. "In the first waterless lithography class I taught at UK, we had three students get accepted in a national juried competition celebrating 200 years of lithography," says Zirkle. "Our students' work was shown side-by-side with the work of artists who have been the mainstay at juried competitions for twenty years. These were all first-semester students." In 1998 Zirkle's students had a ground-breaking opportunity - they printed lithographs for Ecuadorian artist Nelson Santos with water-based inks. Graduate, Helene Steene, says the way Ferstman and Zirkle teach is a source of inspiration.
"These teachers can bring ideas out of every individual and encourage experimentation." "A lot of process-related work is problem-solving, and there's a lot of problem-solving in all art-making," says Joyce Probus. "You learn to direct the process instead of the process directing you. I've never faced a blank piece of paper without ideas as a result of getting to work with these new techniques. It's been an excellent opportunity."
Alicia P. Gregory, Associate Editor
Lee P. Thomas, Photographer
Odyssey covers the latest research advances, innovation scholarships, and outstanding people that are part of the University of Kentucky's $300 million-a-year research enterprise.
Health and Safety in the Arts
Useful Sources of Information and Expert Advice: publications and websites
HEALTH & SAFETY IN THE ARTS: PUBLICATIONS
Michael McCann Michael McCann Monona Rossol
Artist Beware Health Hazards The Artist's Complete
Manual for Artists Health & Safety Guide
SAFE PRINTMAKING: PUBLICATIONS
Keith Howard Adams & Robertson Henrik Boegh Roni Henning
The Contemporary Intaglio Handbook of Non-Toxic Water-Based Screenprinting
Printmaker Intaglio Today
LINK LINK LINK LINK Printmaking Resources (Publications)
HEALTH & SAFETY IN THE ARTS: WEBSITES
The University of Illinois at Chicago, Online Health & Safety in the Arts Library (UIC)
UIC
A comprehensive resource for artists, art schools, print studios etc. The mission of the Health in the Arts Program is to diagnose, treat and prevent arts-related disorders among people working in all aspects of the arts. There is increasing recognition that work in the arts can involve health risks such as exposures to toxic materials and hazardous physical conditions. Injuries and repetitive motion disorders can also result from practice and from work in the arts...
The Chicago Artists Resource (CAR)
CAR
Featuring a section that includes over 250 articles on health and safety issues for artists, originally published as part of the Art Hazard News.
Arts, Crafts & Theater Safety, Inc. (ACTS)
ACTS
Providing safety and hazard information for the arts - worldwide. ACTS is a not-for-profit corporation that provides health, safety, industrial hygiene, technical services, and safety publications to the arts, crafts, museums, and theater communities. A part of the fees from our consulting services goes to support our free and low-cost services for artists. We gratefully accept donations, but do not solicit them from the artists who call here for help and advice. We recognize that artists and performers are among the least affluent groups in society.
The Art & Creative Materials Institute, Inc. (ACMI)
ACMI
A non-profit association of manufacturers of art, craft and other creative materials. Identifies art materials (using the ACMI seals) that are safe and that are certified in a toxicological evaluation by a medical expert...
The American Society for Testing & Materials (ASTM)
ASTM
Features information on the labelling of art materials for chronic health hazards.
Pixelated Palette
PIXELATED PALETTE
Site includes the article 'Art Materials Safety' by E.L. Kinnally that provides sources of information about using artists' materials safely...
Tucson, Arizona: Art Hazards Database
TUCSON: ART HAZARDS
A searchable database of health and safety information for artists including a database of Art Mediums, Studio Safety and Health links.
Winsor & Newton
WINSOR & NEWTON
Supplier of artists' materials. Health and safety information for artists.
GENERAL HEALTH & SAFETY AGENCIES
The U.S. Department of Labor, Occupational Safety and Health Administration (OSHA)
OSHA
OSHA aims to ensure employee safety and health in the United States by working with employers and employees to create better working environments. The agency provides a variety of useful publications in print and online.
The Environmental Protection Agency (EPA)
EPA
The mission of the Environmental Protection Agency is to protect human health and the environment.
Environmental Health Perspectives (EHP)
EHP
A monthly journal of peer-reviewed research and news on the impact of the environment on human health. EHP is published by the National Institute of Environmental Health Sciences and its content is free online. Print issues are available by paid subscription.
The National Institute for Occupational Safety and Health (NIOSH)
NIOSH The federal agency responsible for conducting research and making recommendations for the prevention of work-related injury and illness.
Rachel's Environmental & Health News at the Environmental Research Foundation (ERF)
RACHEL
News and resources for environmental justice. New Brunswick, NJ-based organization seeking to provide understandable scientific information about human health and the environment to the public.
The World Health Organisation (WHO)
WHO
Publication catalog, media resources, health articles, and current health news. List of upcoming health events, conferences, and summits.
U.S. Consumer Products Safety Commission (CPSC)
CPSC
The CPSC is committed to protecting consumers and families from products that pose a fire, electrical, chemical, or mechanical hazard. Chronic Hazard Guidelines available as pdf.
INFORMATION ON HAZARDOUS SUBSTANCES
TOXNET and the Hazardous Substances Data Bank (HSDB)
TOXNET
The US National Library of Medicine information service for details about solvents etc.
The Hazardous Substances Data Bank (HSDB) is a comprehensive, peer-reviewed toxicology data for about 5,000 chemicals.
SITES SPECIFIC TO SAFE PRINTMAKING
KEITH HOWARD
www.KeithHoward.org
Head of Printmaking and Research at the Rochester Institute of Technology School of Art. Innovator of non-toxic printmaking methods; author of The Contemporary Printmaker, which details the latest non-toxic intaglio printmaking techniques.
CEDRIC GREEN
www.greenart.info/
Cedric Green's site on non-toxic, alternative methods for printmaking with comprehensive extracts from his handbook on healthier and safer methods for intaglio etching and metal plate printmaking, with grounding and plate making methods avoiding the use of traditional toxic grounds, varnishes, resins, solvents and any chemicals harmful to health and to the environment.
NIK SEMENOFF
www.homepage.usask.ca
www.worldprintmakers.com/english/semenoff/safer.htm
Nik Semenoff's site on safer and environmentally friendly printmaking processes using common materials available in every community.
HENRIK BOEGH
www.GrafiskEksperimentarium.dk
www.artbag.dk
Henrik Boegh is a well-known author and artist in the printmaking world. Since he established Experimentarium in Copenhagen in 1997 he has been working to spread the techniques of Non-Toxic Intaglio across Europe.